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Stress-strain near a crack tip generated by longitudinal shear is considered at 
the initial stage of its development, under the conditions of a nonsteady, quasi- 
static regime. The defining relations of the slip theory are adopted Cl]. The 

asymptotic solution of the problem constructed in the first approximation using 

the method of a small parameter, is compared with a similar solution obtained 
from the theory of flow with isotropic hardening [2]. The influence of weak 
anisotropy on the order of the singularity and the peripheral distribution of 
stress rates are assessed. 

1. The relations of the theory of plasticity based on the concept of slip [I] 
predict a sharp deformational anisotropy of the medium, especially in the case when 

additional loading occurs from the state arrived at by a preliminary active process with 
a well defined direction of development. This specifies the part played by the theory 
in estimating the influence of the accumulated anisotropy on the structure of the solution 
near the end of a crack developing in an elastoplastic material. 

In the case of antiplane deformation, the defining relations of the slip theory 
admit the formulation similar to the two-dimensional version which was studied in [3 1. 
Let us refer the homogeneous state of a small element of the medium to the Cartesian 

t, y, z coordinate system and denote by n the vector normal to the running slip 
plane inclined to the 5 -axis at the angle w . Let shear stresses T,x~ and ‘r,, act on 
the element so that we have ‘t,, = ~~~ cos o + TV,, sin o on the slip plane.’ Then a 
local shear of magnitude ynz = F (T,‘?) will appear in the slip system. According to 
the basic concept of the slip theory, the plastic deformation can be found by performing 
a summation (the subscript z is omitted ) 

yp -- 1 F (z,) (el cos h + e2 sin h) dh (1. 1.1 

TG,=TCOS~~, 71,=*sinp, 3L=o-_, T,=rc0s3L>T0 

cos 3L0 = -co I T, e, = i cos /3 + j sin /3, e2 = - i sin fi + j cos /3 

Here i and j denote the unit vectors along the axes of TX and z,; p is the loading 
angle and Z~ denotes the reaction opposing the shear in the slip system. The integration 
is carried out over the region ( ii 1 < 3Lo, since F = 0 for Z < ‘CO- 

The relation (1.1) yields the following expression for the additional loading : 

6.+~F'(t,)S ~COS@ - a)(el cash 4- e2sinh) ah! (1.2) 
(2 

67, = 6f cos (h - a), at - 6’6 (~0s (p + a) i + sin (B + a) j) 

For an active process, the limits of integration in (1.2) are determined from the con - 
ditions 1 h 1 < A,,, cos (3, - a) > 0 . For 01 > 0 they have the form 
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a = - 3Lo, b = A, (0 < a < J-C / 2 - Lo) (1.3) 

a=a-n//2, b=3L0 (rc/2-i’~0<a<n/2 +A,) 

and correspond to the regions of complete and incomplete loading. When 3t / 2 -I- ho 

<a,<n. the additional plastic deformations in (1.2 ) vanish. 

In order to simplify the relationships (1.1) and (1. 2) we shall assume that for 
a, > ‘60 the local slip mechanism is determined by the simplest possible relation 

F (T,) = C (‘6, - ‘60). Performing the integration in (1.1) and adding the elastic 
deformations Yi” = Ti / G, we see that the relation governing the deviator intensities 

z (Y) E Cr(O9 m)9 and 
G (1.4) 

z = Gy (v <YO), ‘t’-- 
i 

G 2 

IfP 
y-c%P=g,g=~ 

) 

We note that the inclusion of the higher powers in the expansion for F (T,,) 
also leads to the case of power law hardening for the macrodiagram Z (y) . The hard- 

ening index however is found to differ from unity when y --f 00. The latter fact can 
also be established using the method given in [4]. 

Integrating (1.2) and taking (1.3 ) into account, we obtain the additional pla- 
stic deformations 

sin 2ho cos (p - a) + 2ho cos (p + a), O\(a\<5/2-?L0 
(1.5 1 

Gyrp = -gX 

! 

eos(a-~0)sin(~+~o)+(~o-a+n/2) x 
coqB+a), [a--/2~<~0 

0, n/2 +h0<a<: 

6y,P = z+ 

I 

sin 2ho sin (fi - 4+2h0sin(P+n), O\<a,<n/2-Lo 

- COS (a - ho) cos(B+hO)+(ho--a+x/2) sin @+a), la--n/21<h, 

O, 3-v2+~o<u+c 

We see from (1.5 ) that the relation between the stress and deformation increments is 
differentially linear in the zone of complete loading, in constrast to the analogous re - 
lation for the zone of incomplete loading where the nonlinearity is caused by the appear- 
ance in the equations of the explicit quantity a = arctg (6’6, / at?,) - p and 

complicates, in general, their use. 

2, Let an elastoplastic body with a crack of cut along the ray cz < 0, y = 0 
be subjected to a longitudinal shear in the 2. -direction. By virtue of the singular char- 
actor of the stresses we find that in a sufficiently small neighborhood of the tip, the state 
preceding the onset of crack propagation and corresponding to some value of the stress 
intensity factor Ks., is attained under the loading which is nearly proportional. From 
the linearity of the asymptotics of the diagram it follows from (1.4 ) that the principal 
term of the stress field has the form 12 ] (r, 6 are the polar coordinates ) 

Ko 6 To T1/O = -gosh) ‘X = 
-KRsin$ 

r’l’ 
(2.1) 

Using (1.1) and (2.1) we find that fi = (n + 6) / 2. 
Let us assume that when K increases, the crack length increases by 61 and a 

redistribution of 7f and Yt takes place in accordance with Pqs. (1.5 ) of the theory. 
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IJsing(l.l)and(2.11wefindthat ~/~s-fo~, A,,-+n/z, when r-+0, and 
61 --t 0 (61 / r = 0 (I)), therefore the zones of complete loading and unloading de- 

generate into the lines a = 0 and n respectively, while the zone of incomplete 
loading is realized for all angles 1 a I< n; of additional loading. Neglecting in (1.4 ) 

terms of higher order smallness compared with &r and passing to the polar coordinate 

system we obtain, after some manipulations, the following nonlinear equations : 

Gay, = 6’6, + k.fl (a, fi) 67, Ghy, = 6~ + pfz (a, 6) 6~ (2.2) 

(6y, - d (6~) / dr, 61’~ = d (6~) / 739) 

The relations (2.2 ) predict an active process under any direction of additional loading, 
since the angle at the tip of the conical singularity of the loading surface is infinitely 

small. Indeed. from (1. 2) (or (2. 2) ) follows 

1 6yp 1 = (6T / gTc) [ sin2 a + (31 - a)2 + (3-c - a) sin 2~~1”~ > 0 

O<CC,<TC 
We note that the specific work done by the plastic deformations 6Ap = 

(r61t. / gn) [sin a + (?C - a)] is also nonnegative. For this reason the defining equ- 
ations (2.2 ) represent, at the same time, a variant of the analytic theory of plasticity 
introduced in [4 1 along a different route and also leading to equations of the differ - 
entially-nonlinear type. 

Passing in (2.2) to the rates of change of the parameters and introducing the 
stress rate function CD (r-, 6) (a,’ = SD / rd6, -cg’ = -A’@ / dr; where a prime 
denotes differentiation with respect to the dimensionless load parameter, we substitute 
(2.2) into the compatibility equation 

(A is the Laplace operator and the functions fi (a, 6) and fs (a, 4~) are defined in 
(2.2) > 

The boundary conditions for the case of stress-free edges are 

(Da’ (r, U) = 0, 0 (r, x) = 0 (2.4) 

We seek the solution of the boundary value problem (2.3 ) , (2.4), using the method 
of a small parameter. In the zeroth approximation, we set p = 0, Do = PY, 

(f% -“/t < m < 0. Taking into account the fact that Ya (9) is even , from (2.3 ) 
we obtain 

Y,” + m2Y, = 0, Yy, = cos m6, a = n6 (n = ffz - m) (2.5) 

The solution (2.5 ) contains an undefined multiplier from the normalizing conditionY, 
(0) = 1.Restricting ourselves to the case of nonlinearity C, = o (‘l), we substitute 

YCI and a from (2.5 ) into the right-hand side of (2.3 ) . 
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Denoting the first approximation by at, (r’, 6) we obtain, after the relevant mani- 
pulations, an equation for u’, and the ‘boundary conditions: 

y,“+m2Y~=~/sin(n+~)B-sin~~] (#~=PyrL(*)) (2es) 

YI (0) = 1, Y1’ (0) = 0, Yl (n) = 0 

The solution of (2.6 > has the form 

Y&3)= cosm6- FL++ y;7;n) 1 sinm6 i- 

P” @ 
- TCosmfi+&sin nf n [ ( +I 

and the characteristic equation for m is 

When p = 0 (Hook’s body 1, (2.5) and (2.7) together yield m = -ii2, Y, = Y2 
and the solution (2.5 > becomes exact. 

Below we give the relation m (p) obtained from (‘2.7) by numerical methods 

and presented for (mc (p)) 

EL 0 0.05 0.1 
- WC. 103 

0.2 0.5 1 
500 

10 
488 478 461 429 400 - 

- r7zr.103 500 492 485 4i2 439 413 234 

For small P we set in (2.7) m = -- l/s + c: (p) (a = o (I)), and this yields 

e (p) = 2~ I rP, m = - V2 + 2p I 9 

The distribution of the stress rates calculated in accordance with (2.6 1, (2.7 ) 
is shown in Fig. 1 for p, = 0.1 (curves I and 2 for T, and Ta respectively 1 and for 

p = 0.5 (curves 5 and 6). The case of ~1 = 0 is given for comparison using a 

dashed line. Here Ti (#) = zi’ f P-i, i = r, 6. 

3. Let us now consider the same problem within the framework of the isotropic 
flow theory with linear hardening 

Gy,’ = IY6,’ + pr&‘2;, cy,’ = zg’ + j.&2s-%‘2s0 (3.1 1 

7’20 = Zp’Zr’ + Zg”zg’, rCOa = Ti*Zi’ = f (Q), dp = (‘/~ dyiPdyiP)c’* 

The quantities accompanied by the superscript * refer to the state of limiting equi - 

lib&m of the crack (2.1) . 
To find the principal term @ (r, 6) = r”‘Y (+) of the asymptotic expansion 

of the Airy function, we have the following problem for the eigenvalues [2]: 

~(~+~si~z~)-~m-~)~~i~~Y~+Ym[(m-~) X (3*2) 

x 1+pcosq 
i 

)+l+~]=O (0\(6,(6,); Y’(O)=% 

Y (0) = 1 (3.3) 

Yp” + m2Y = 0 (6, < 6 < n); Y (31) = 0 

IYI = [Y’l = 0, (4b = 6,) 
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T’ (61) sin 2 - mY (6,) ~0s $ = 0 (3.4 1 

The equations (3.2) 33.4) take into account the appearance of the domains of 

elastic unloading in the regions adjacent to the crack edges, and the symmetry of the 
solution about the x. -axis. It follows that the condition of neutral loading (3.4) must 
hold on the ray 6 = fii Fig. 1 

0 nl2 ih n 0 IrlZ d* %- 

Integrating (3.3 ) over the domain of unloading 6, < 6 < n and satisfying 
the boundary conditions from (3.3 ) and (3. 4) we find, that the problem has a nontrivial 
solution 

Y = A sin m (n - 6) /‘sin mn (fil < 6 < n) (3.5) 

under the condition that sin [(m - ‘/2)fil - mrcl = 0. The latter defines the value of 
6, in the function of the singularity index f21 

6, = mn / (m - Vz) (-i/z < m < 0) (3.6 ) 

Using the fact that the stress rates are continuous and the relation (3.5) we find 
that (3.4 ) yields 

mY (6,) cos &+ y’(tir)sin* = Cl 

The condition (3. ‘7) closes the boundary value problem (3.2) and is used to determine 
the relation m = m (p). The second condition of (3. 2) is used here for normalizing. 

The above boundary value problem was solved by numerical methods. The run- 

ning iteration included integrating the Cauchy problem (3.2) on [O, or1 , estimation of 
discrepancy for (3.‘7), and derivation of a more accurate value of m, by the method of 
dividing the segment in half. The condition of additional loading z’ > 0 (0 < 6 < 6,) 
and unloading T’ < 0 (8, < 6 d n). were checked for the solution obtained. 

The relation mT (CL) obtained is tabulated above, while the functions T, (6) 

(curves 3 and ‘7) and T*‘(8) ( curves 4 and 8 ) are shown in Fig. 1 (curves 3 and 4 
for p = 0.1, curves 7 and 8 for p = 0.5). The case of weak hardening p = 10 
is depicted by the curves 9 (T,) and 10 (To), 

Comparing the solutions of Sect. 2 and 3 we find, that there is little difference 
in the values of m and in the distributions of the component TB in the peripheral dir- 
ection(not more than 1.5 and 3% for p = 0.1, 2.7 and 8% for 1~ = 0.5).This 
implies that during the initial stage of crack development the influence of anisotropy 
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on the level of concentration is not particularly significant. At the same time, the 
noticeable difference in the value of T, (and T = (TiTi)%) indicates the growing 

lack of overlap between the forms of the regions in which the deformations are consid- 
erable. For the medium (1.11, (1.2) the region of unrestricted plastic flow has, as we 
would expect, more fluid boundaries and its characteristic size exceeds that of the iso- 

tropy case (3.1) . The deviations indicated have systematic character and it can app- 

arently be assumed that the deviation of the loading trajectory in the elements near the 
tip from proportionality which increase with the growth of the crack, leads to an in - 
crease in the above mentioned effects. 
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